Transductive Kernel Matrix Learningwith Hierarchic Bayesian Model, Application to Hyperspectral Images

نویسندگان

  • A. Ferrari
  • C. Richard
  • C. Theys
چکیده

In recent years, kernel methods have demonstrated their performance in hyperspectral imaging. Among the reasons their ability to handle large input spaces is essential. However for this type of applications a critical problem is the choice of the kernel which must combine spectral and spatial information [1] and of course achieve good generalization performance. The kernel design stage is generally defined as the optimization of a distance metric when the kernel is chosen in a particular subspace. The alignment criterion between a parametrized kernel and a target kernel [2, 3] belongs to this family. However this solution does not embed the kernel learning problem in a particular kernel-based algorithms such as the support vector machine (SVM). This is not the case of [4] where both problems of kernel learning and SVM estimation are jointly solved in a transductive setting using semidefinite programming. The Bayesian formalism is another powerful framework for kernel learning. In [5] a hierarchical model is used to achieve a transductive learning of the kernel matrix. In the Bayesian learning context, relevance vector machine (RVM) is the natural choice to tackle jointly the Kernel learning and estimation of the classification algorithm parameters. A solution to this problem is proposed in [6] where linear composite kernel learning and RVM regression coefficients estimation are performed using a global hierarchic Bayesian model. This contributions proposes a general formalism for joint transductive learning of the kernel matrix and regression coefficients estimation in a Bayesian context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

SVM classification of hyperspectral images based on wavelet kernel non-negative matrix factorization

This paper presents a new kernel framework for hyperspectral images classification. In this paper, a new feature extraction algorithm based on wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using the feature of multi-resolution analysis, the new method can improve the nonlinear mapping capability of kernel non-negative matrix fac...

متن کامل

Transductive Kernel Map Learning and its Application to Image Annotation

We introduce in this paper a novel image annotation approach based on maximum margin classification and a new class of kernels. The method goes beyond the naive use of existing kernels and their restricted combinations in order to design “model-free“ transductive kernels applicable to interconnected image databases. The main contribution of our method includes the minimization of an energy func...

متن کامل

جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA

Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010